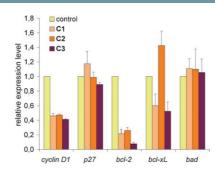
FROM OUR SISTER JOURNALS


Cell-Cycle Regulation ■

J. Gao,* Y.-G. Liu, Y. Zhou, L. M. Boxer, F. R. Woolley, R. A. Zingaro*

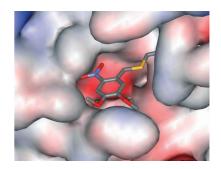
Artificial Zinc(II) Complexes Regulate Cell Cycle and Apoptosis-Related Genes in Tumor Cell Lines

ChemBioChem

DOI: 10.1002/cbic.200600299

Death metal. Novel luminescent zinc(II) complexes have been found to penetrate through the cell membrane and induce apoptosis in malignant cell lines. The *meso*- species of a set of cyclic zinc(II) complexes (**C3**) was found to be an efficient regulator of the anti-apoptotic gene, *bcl-2* (see figure). This study highlights a new approach to the use of zinc(II)-based complexes as potential drugs.

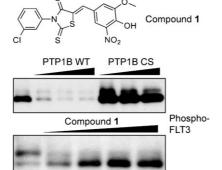
Enzyme Photochemistry


P. Rathert, T. Raskó, M. Roth, K. Ś. Kiss, A. Pingoud, A. Kiss, A. Jeltsch*

Reversible Inactivation of the CG Specific SssI DNA (Cytosine-C5)-Methyltransferase with a Photocleavable Protecting Group

ChemBioChem

DOI: 10.1002/cbic.200600358


Trick of the light. We describe the covalent modification of the Sssl DNA methyltransferase (M.Sssl) with 4,5-dimethoxy-2-nitrobenzyl-bromide (DMNBB) to obtain M.Sssl with a caged active-site Cys residue (see figure). Irradiation of the caged enzyme with near-ultraviolet light restored its catalytic activity. The results indicate that caging by DMNBB can be used for the reversible inactivation of DNA methyltransferases.

Phosphatase Inhibition

M. Stuible, L. Zhao, I. Aubry, D. Schmidt-Arras, F.-D. Böhmer, C.-J. Li, M. L. Tremblay*

Cellular Inhibition of Protein Tyrosine Phosphatase 1B by Uncharged Thioxothiazolidinone Derivatives

Charge less. We show that a novel inhibitor (1) of PTP1B is active in cells at low micromolar concentrations and prevents PTP1B-mediated dephosphorylation of the FLT3-ITD receptor tyrosine kinase (shown). We have synthesized a series of derivatives for basic SAR analysis and have conducted computer-modeling studies to predict its binding mode. This class of uncharged inhibitors could be a starting point for the development of new drugs targeting protein tyrosine phosphatases.

ChemBioChem

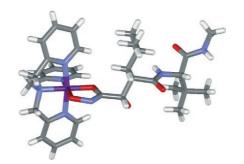
DOI: 10.1002/cbic.200600287

Natural Products I

T. Sun, Q. Wang, Z. Yu, Y. Zhang, Y. Guo,* K. Chen, X. Shen,* H. Jiang*

Hyrtiosal, a PTP1B Inhibitor from the Marine Sponge *Hyrtios erectus*, Shows Extensive Cellular Effects on PI3K/AKT Activation, Glucose Transport, and TGFβ/Smad2 Signaling

ChemBioChem

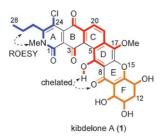

150

DOI: 10.1002/cbic.200600349

A potential insulin mimetic. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling, and PTP1B inhibitors have been seen as promising therapeutic agents against obesity and type 2 diabetes. Here we report that hyrtiosal, a marine natural product from the marine sponge *Hyrtios erectus* and newly identified as a PTP1B inhibitor, shows extensive cellular effects on PI3K/AKT activation, glucose transport, and TGFβ/Smad2 signaling.

Drug Delivery

Hypoxia-activated cobalt prodrugs: A Co^{III} complex of the matrix metalloproteinase (MMP) inhibitor marimastat (crystal structure shown), designed to selectively deliver the inhibitor to hypoxic tumour sites, exhibits enhanced biological activity in a mouse model.


T. W. Failes, C. Cullinane, C. I. Diakos, N. Yamamoto, J. G. Lyons, T. W. Hambley*

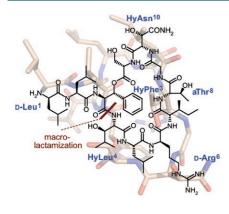
Studies of a Cobalt(III) Complex of the MMP Inhibitor Marimastat: A Potential Hypoxia-Activated Prodrug

Chem. Eur. J.

DOI: 10.1002/chem.200601137

Natural Products

A rare *Kibdelosporangium* sp. isolated from an Australian soil sample has been found to produce the kibdelones (see figure), a novel family of heterocyclic polyketides that exhibit potent and selective cytotoxicity against a panel of human tumor cell lines, and also display significant antibacterial and nematocidal properties.


R. Ratnayake, E. Lacey, S. Tennant, J. H. Gill, R. J. Capon*

Kibdelones: Novel Anticancer Polyketides from a Rare Australian Actinomycete

Chem. Eur. J.

DOI: 10.1002/chem.200601236

Antibiotic Resistance

Tackle-resistant bacteria: Determination of the 3D structure of the antibiotic lysobactin has led to its total synthesis and resulted in a high-yielding macrolactamization step. The minimal use of protecting groups allowed preorganization of the side chains to steer the cyclization. Thus, a new chemical route has been developed in the search for innovative antibiotic lead structures.

F. von Nussbaum,* S. Anlauf, J. Benet-Buchholz, D. Häbich, J. Köbberling, L. Musza, J. Telser, H. Rübsamen-Waigmann, N. A. Brunner

Structure and Total Synthesis of Lysobactin (Katanosin B)

Angew. Chem. Int. Ed.

DOI: 10.1002/anie.200604232

inhibitor nontoxic hetero assemblies toxic conformations / assemblies / fibrils

Le fabuleux destin d'amyloid disease:

A peptide-derived inhibitor for amyloid diseases binds the Alzheimer's disease β -amyloid peptide (A β 40) and the type II diabetes islet amyloid polypeptide (IAPP) and blocks cytotoxic self-assembly of both peptides. Evidence is also presented for a high-affinity interaction between A β 40 and IAPP that results in cross-suppression of cytotoxic self-association of both peptides.

Protein Aggregation

L.-M. Yan, A. Velkova, M. Tatarek-Nossol, E. Andreetto, A. Kapurniotu*

IAPP Mimic Blocks $A\beta$ Cytotoxic Self-Assembly: Cross-Suppression of Amyloid Toxicity of $A\beta$ and IAPP Suggests a Molecular Link between Alzheimer's Disease and Type 2 Diabetes

Angew. Chem. Int. Ed.

DOI: 10.1002/anie.200604056